Dynamics of Martensitic Interfaces
نویسنده
چکیده
The basic dynamic behavior of martensitic interfaces has been analyzed within the framework of lattice dislocation dynamics. Two limiting cases of the martensitic interface structure have been considered: (a) the case when the interface can be appropriately described in terms of an array of non-interacting (well-spaced) interfacial dislocations and; (b) the case when the interfacial dislocations are so closely spaced that the interface can be approximated by a continuous distribution of dislocations. In the first case, it was demonstrated that, after the inclusion of a “chemical” driving force in the equation of motion, the dynamics of lattice dislocations can be directly applied to analyze the interfacial dynamics. In the second case, on the other hand, while the lattice dislocation dynamics is still quite relevant, several parameters in the equation of motion have to be redefined to reflect the fact that the interface now acts as a planar defect. For both of the cases of interfacial dislocation structure, we have analyzed the two basic modes of interfacial motion: (a) the continuous mode in which the motion is controlled by various energy-dissipative processes (e.g., phonon and electron drag) and; (b) the discontinuous or jerky mode in which the motion is controlled by the thermal activation of the interface/obstacle interactions.
منابع مشابه
Molecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces
In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...
متن کاملMolecular dynamics simulation of interface dynamics during the fcc-bcc transformation of a martensitic nature
The structural and dynamic properties of the interface during the fcc-bcc transformation in pure iron have been investigated by molecular dynamics simulations. An embedded atom method potential was used for the atomic interactions. Two interfaces, close to the Bain and Kurdjumov-Sachs orientation relations, have been examined during the fcc-to-bcc transformation. In each simulation the system w...
متن کاملInvestigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy
In this study the α′′ stress-induced martensitic transformation and damping behaviour of the superelastic β-Ti–25Ta–25Nb alloy are investigated by tensile tests at room temperature and by dynamic mechanical analysis (DMA) in tensile mode for different applied stresses. Tensile tests show a fully non-linear elastic domain and, consequently, a specific method is proposed to determine the elastic ...
متن کاملMolecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces
In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...
متن کاملDynamics of non-isothermal martensitic phase transitions and hysteresis
We consider a non-isothermal one-dimensional model of martensitic phase transitions that incorporates a finite bar with a non-monotone temperature-dependent stress–strain law and non-zero latent heat. Two dissipation mechanisms are considered: heat conduction and the internal viscous dissipation of kinetic origin. Time-dependent displacement and ambient temperature are prescribed at the ends of...
متن کامل